Abstract
We demonstrate optomechanics in the sub-terahertz regime. An optical racetrack resonator, patterned from thin-film lithium niobate, is suspended to support mechanical structures oscillating at these extremely high frequencies, which are read out through cavity optomechanical coupling. Our hybrid platform paves the way for advancing mechanical systems in the quantum regime at elevated temperatures.
Funder
Air Force Office of Scientific Research
Office of Science