Silicon photonic neuromorphic accelerator using integrated coherent transmit-receive optical sub-assemblies

Author:

Zhu Ying1,Luo Ming1ORCID,Hua Xin1,Xu Lu1,Lei Ming1,Liu Min1,Liu Jia1,Liu Ye1,Wang Qiansheng1,Yang Chao1,Chen Daigao1,Wang Lei2,Xiao Xi12

Affiliation:

1. China Information and Communication Technologies Group Corporation (CICT)

2. Peng Cheng Laboratory

Abstract

Neural networks, having achieved breakthroughs in many applications, require extensive convolutions and matrix-vector multiplication operations. To accelerate these operations, benefiting from power efficiency, low latency, large bandwidth, massive parallelism, and CMOS compatibility, silicon photonic neural networks have been proposed as a promising solution. In this study, we propose a scalable architecture based on a silicon photonic integrated circuit and optical frequency combs to offer high computing speed and power efficiency. A proof-of-concept silicon photonics neuromorphic accelerator based on integrated coherent transmit–receive optical sub-assemblies, operating over 1TOPS with only one computing cell, is experimentally demonstrated. We apply it to process fully connected and convolutional neural networks, achieving a competitive inference accuracy of up to 96.67% in handwritten digit recognition compared to its electronic counterpart. By leveraging optical frequency combs, the approach’s computing speed is possibly scalable with the square of the cell number to realize over 1 Peta-Op/s. This scalability opens possibilities for applications such as autonomous vehicles, real-time video processing, and other high-performance computing tasks.

Funder

National Natural Science Foundation of China

Young Top-notch Talent Cultivation Program of Hubei Province

Natural Science Foundation of Hubei Province

Publisher

Optica Publishing Group

Reference60 articles.

1. Deep learning

2. Mastering the game of Go with deep neural networks and tree search

3. ImageNet classification with deep convolutional neural networks

4. Language models are few-shot learners;Brown,2020

5. Exploiting linear structure within convolutional networks for efficient evaluation;Denton,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3