Displacement extraction of background-oriented schlieren images using Swin Transformer

Author:

Cai HuajunORCID,Song Yang,Ji Yunjing,Li Zhenhua,He Anzhi

Abstract

Displacement extraction of background-oriented schlieren (BOS) is an essential step in BOS reconstruction, which directly determines the accuracy of the results. Typically, the displacement is calculated from the background images with and without inhomogeneous flow using the cross-correlation (CC) or optical flow (OF) method. This paper discusses the disadvantages of the CC and OF methods, and an end-to-end deep neural network was designed to estimate the BOS displacement. The proposed network is based on a Swin Transformer, which can build long-range correlations. A synthetic dataset used for training was generated using the simulated flow field by computational fluid dynamics. After training, the displacement can be obtained using the BOS image pair without additional parameters. Finally, the effectiveness of the proposed network was verified through experiments. The experiments illustrate that the proposed method performs stably on synthetic and real experimental images and outperforms conventional CC or OF methods and classic convolutional neural networks for OF tasks.

Funder

National Natural Science Foundation of China

Ministry of Industry and Information Technology of China

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3