Affiliation:
1. The University of Edinburgh
Abstract
Optical camera communication (OCC) shows promise for optical wireless communication (OWC) in vehicular networks. However, vehicle mobility-induced angular distortions hinder system throughput by degrading non-isotropic vehicular OCC channel gain. Few of the prior works have ever made a comprehensive analysis of their impact, especially based on the pixel value which reflects the camera imaging features. To address this knowledge gap, a pixel value-described vehicular OCC system model accounting for transmitter imaging location and intensity from the geometry and radiometry aspects is presented in this paper with common types of the offset and rotation angles included. We integrate a MATLAB-based simulated vehicular OCC system with an experimentally designed testbed for validation and performance analysis. For a single-time snapshot, we investigate the impacts of common angular distortion types in vehicular OCC systems on maximum pixel value, imaging location, and communication-related metrics. Furthermore, we statistically analyze their influences by considering two driving scenarios with respective angular distributions. The angular distortion characterization from this work is expected to lay a stepping stone to addressing mobility in vehicular OCC systems.
Funder
Jilin Provincial Scientific and Technological Development Program
National Natural Science Foundation of China
China Scholarship Council
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献