1D spatially chirped periodic structures: managing their spatial spectrum and investigating their near-field diffraction

Author:

Zarei Mohammadreza,Hebri Davud,Rasouli Saifollah1ORCID

Affiliation:

1. Optics Research Center, Institute for Advanced Studies in Basic Sciences (IASBS)

Abstract

This work introduces a class of 1D spatial-frequency-modulated structures with transmittance T ( x ) , in which the period changes along the x axis so that the corresponding spatial frequency f ( x ) sinusoidally alternates between two values. It is shown that T ( x ) generally is an almost-periodic function and has an impulsive spatial spectrum. However, we find the condition under which T ( x ) is a periodic function and its spatial spectrum form a lattice of impulses. When the periodicity condition is fulfilled, we call these structures as 1D spatially chirped periodic structures. These structures are characterized by two natural numbers, named as n c and n a v , and a real parameter named as frequency modulation strength (FMS). As an important special case, we define a 1D spatially chirped amplitude sinusoidal grating (SCASG) based on the transmission function of a conventional amplitude sinusoidal grating, in which the phase of conventional amplitude sinusoidal grating is replaced by desired chirped phase. Then the spatial spectrum of a 1D SCASG is investigated in detail, and it is shown that the spatial spectrum can be managed by changing the value of FMS. In other words, the grating’s spectrum can be manipulated by adjusting the value of FMS. This feature might find applications in optical sharing of the incident power among different diffraction orders. Moreover, near-field diffraction from 1D SCASGs is studied by using the so-called angular (spatial) spectrum method, and Talbot distances for these gratings are determined and verified experimentally. It is shown that the intensity profiles at quartet- and octant-Talbot distances strongly depend on the values of the parameters n c and n a v . In comparison with the conventional gratings, we see some new and interesting aspects in the diffraction from 1D SCASGs. For instance, unlike the conventional gratings, in some propagation distances, the diffraction patterns possess sharp and smooth intensity bars at which the intensity is several times of the incident light beam’s intensity. It is shown that the maximum intensity of these bright bars over the diffraction patterns depends on the characteristic parameters of the grating, including n c , n a v , and FMS of the grating. These intensity bars might find applications for trapping and aggregation of particles along straight lines.

Funder

Institute for Advanced Studies in Basic Sciences

Iran National Science Foundation

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3