Abstract
To obtain the surface shape of an X-ray mirror with high precision, a differential deposition method was used instead of a direct removal method. To modify the mirror surface shape using the differential deposition method, it is necessary to coat it with a thick film, and the co-deposition method is used to suppress the increase in surface roughness. The addition of C to the Pt thin film, which is often used as an X-ray optical thin film, resulted in lower surface roughness compared with that with the Pt coating alone, and the stress change according to the thin film thickness was evaluated. Differential deposition controls the speed of the substrate during coating based on continuous motion. The stage was controlled by calculating the dwell time through deconvolution calculations based on the accurate measurement of the unit coating distribution and target shape. We successfully fabricated an X-ray mirror with high precision. This study indicated that an X-ray mirror surface could be manufactured by modifying the surface shape at a micrometer level through the coating. Changing the shape of existing mirrors can not only result in the manufacture of high-precision X-ray mirrors but also improve their performance.
Funder
National Research Foundation of Korea
Ministry of SMEs and Startups
Ministry of Trade, Industry and Energy
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献