Affiliation:
1. School of Optics and Photonics, Beijing Institute of Technology
2. Hebei GEO University
3. Balochistan University of Information Technology
4. Beijing Institute of Technology
Abstract
As a flexible and compact nanophotonic device, the metasurface exhibits excellent potential in holographic display and optical information encryption. However, most metasurfaces are passive devices due to the limitations of fixed material properties and structural components. Magneto-optical metasurface is a hybrid device that integrates tunable functional material with elaborately designed nanostructures. It can realize dynamic modulation of the properties of light since the permittivity tensor for the magneto-optical material can be changed by applying an external magnetic field. Here, we propose a tunable metasurface composing metallic nanohole arrays with a bismuth-substituted yttrium iron garnet interleave layer and a metallic film underlayer placed on a glass substrate. The magneto-optical metasurface can achieve dynamic switchable holographic display in different polarization channels via magnetic field control based on the optical rotation of magnetic material and the complex amplitude modulation of the elaborately designed nanoholes. This feature provides a novel approach for the construction of an active tunable metasurface, which can improve the information storage capacity and security of the device. This concept is expected to be applied to various dynamic modulation fields, such as magnetically tunable lens, beam shaping, and optical information encryption.
Funder
Fok Ying Tung Education Foundation
National Key Research and Development Program of China
Beijing Outstanding Young Scientist Program
National Natural Science Foundation of China
Beijing Municipal Science and Technology Commission
Administrative Commission of Zhongguancun Science Park
Subject
Atomic and Molecular Physics, and Optics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献