Abstract
Deep learning (DL)-based single-frame fringe pattern to 3D depth reconstruction methods have aroused extensive research interest. The goal is to estimate high-precision 3D shape from a single frame of fringe pattern with limited information. Therefore, the purpose of this work attempts to propose an end-to-end DL-based 3D reconstruction method from the single fringe pattern with excellent capability of achieving high accuracy depth recovery and geometry details preservation of tested objects. We construct a multi-scale feature fusion convolutional neural network (CNN) called MSUNet++, which incorporates discrete wavelet transform (DWT) in data preprocessing for extracting high-frequency signals of fringe patterns as input of the network. Additionally, a loss function that combines structural similarity with edge perception is established. Through these measures, high-frequency geometry details of the reconstruction results can be obviously enhanced, while the geometric shape can be effectively maintained. Ablation experiments are involved in validating the effectiveness of our proposed solution. 3D reconstructed results and analysis of generalization experiments on different tested samples imply that the proposed method in this research enjoys capabilities of higher accuracy, better detail preservation, and robustness in comparison with the compared methods.
Funder
National Natural Science Foundation of China
Sichuan Provincial Central Guidance Local Science and Technology Development Project
Key Research and Development Program of Sichuan Province
China Postdoctoral Science Foundation
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献