Design and experimental study of a fiber Bragg grating strain sensor with enhanced sensitivity

Author:

Pan Jianjun,Hou Wei,Wang Liangying,Zou Zisong,Xiao Fan

Abstract

A novel high-sensitivity fiber Bragg grating (FBG) strain sensor is reported, to the best of our knowledge. The sensitivity of the sensor is improved by fixing the FBG on an elastic substrate with a sensitization function. The sensitization principle of the designed sensor is introduced, and the mathematical model of the sensor is established. In the static and dynamic experiments of the sensor, the effect of adhesive between the sensor and the measured structure on the sensitivity of the FBG strain sensor is experimentally investigated. The experimental results show that the adhesive with high shear strength is beneficial to the realization of a high-sensitivity sensor. The sensor fixed with planting bar glue can achieve a sensitivity of 9.42 pm/µ ε , a repeatability error of 4.79%, and a hysteresis error of 3.36%, which is consistent with theoretical and simulation results. The designed high-sensitivity strain sensor has a simple structure, small size, and convenient installation, so it has a good application prospect in micro-strain monitoring.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3