Single-input polarization-sensitive optical coherence tomography through a catheter

Author:

Jones Georgia L.12ORCID,Xiong Qiaozhou3,Liu Xinyu45ORCID,Bouma Brett E.12,Villiger Martin1ORCID

Affiliation:

1. Wellman Center for Photomedicine

2. Massachusetts Institute of Technology

3. Nanyang Technological University

4. Singapore Eye Research Institute

5. Academic Clinical Program

Abstract

Intravascular polarimetry with catheter-based polarization-sensitive optical coherence tomography (PS-OCT) complements the high-resolution structural tomograms of OCT with morphological contrast available through polarimetry. Its clinical translation has been complicated by the need for modification of conventional OCT hardware to enable polarimetric measurements. Here, we present a signal processing method to reconstruct the polarization properties of tissue from measurements with a single input polarization state, bypassing the need for modulation or multiplexing of input states. Our method relies on a polarization symmetry intrinsic to round-trip measurements and uses the residual spectral variation of the polarization states incident on the tissue to avoid measurement ambiguities. We demonstrate depth-resolved birefringence and optic axis orientation maps reconstructed from in-vivo data of human coronary arteries. We validate our method through comparison with conventional dual-input state measurements and find a mean cumulative retardance error of 13.2deg without observable bias. The 95% limit of agreement between depth-resolved birefringence is 2.80 · 10−4, which is less than the agreement between two repeat pullbacks of conventional PS-OCT (3.14 · 10−4), indicating that the two methods can be used interchangeably. The hardware simplification arising from using a single input state may be decisive in realizing the potential of polarimetric measurements for assessing coronary atherosclerosis in clinical practice.

Funder

National Institute of Biomedical Imaging and Bioengineering

Takeda Pharmaceuticals U.S.A.

Terumo BCT

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3