Computational design and optimization of nanostructured AlN deep-UV grating reflectors

Author:

Shapturenka Pavel1ORCID,Devata Abhiram1,DenBaars Steven P.1,Nakamura Shuji1,Gordon Michael J.1ORCID

Affiliation:

1. University of California-Santa Barbara

Abstract

Deep-ultraviolet (DUV) optoelectronics require innovative light collimation and extraction schemes for wall-plug efficiency improvements. In this work, we computationally survey material limitations and opportunities for intense, wavelength-tunable DUV reflection using AlN-based periodic hole and pillar arrays. Refractive-index limitations for underlayer materials supporting reflection were identified, and MgF2 was chosen as a suitable low-index underlayer for further study. Optical resonances giving rise to intense reflection were then analyzed in AlN/MgF2 nanostructures by varying film thickness, duty cycle, and illumination incidence angle, and were categorized by the emergence of Fano modes sustained by guided mode resonances (holes) or Mie-like dipole resonances (pillars). The phase-offset conditions between complementary modes that sustain high reflectance (%R) were related to a thickness-to-pitch ratio (TPR) parameter, which depended on the geometry-specific resonant mechanism involved (e.g., guided mode vs. Mie dipole resonances) and yielded nearly wavelength-invariant behavior. A rational design space was constructed by pointwise TPR optimization for the entire DUV range (200-320 nm). As a proof of concept, this optimized phase space was used to design reflectors for key DUV wavelengths and achieved corresponding maximum %R of 85% at λ = 211 nm to >97% at λ = 320 nm.

Funder

Army Research Office

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3