Single-frequency DBR lasing by integrating FBGs into germanium-free photosensitive highly Yb3+-doped silica fibers

Author:

Wang Yafei,Yang Qiubai1,Wang FanORCID,Shao ChongyunORCID,Guo Mengting,Wang Shikai,Wang Meng,Zhang Lei,Feng Suya,Chen Danping,Yu Chunlei2,Hu Lili2ORCID

Affiliation:

1. University of Chinese Academy of Sciences

2. Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences

Abstract

Monolithic distributed Bragg reflector (DBR) cavity which directly integrates fiber Bragg gratings (FBGs) into the photosensitive RE-doped fibers is a promising configuration in constructing compact and efficient single frequency fiber lasers (SFFLs). Yet, the doping level of rare-earth (RE) ions has generally to be sacrificed in the classical Ge-photosensitized RE-doped silica fibers because of the dramatic refractive index increase caused by the introduction of Ge. Here, we demonstrate an approach to realize the trade-off between photosensitivity and RE doping concentration. We validate that the addition of a small amount of cerium (0.37wt.%) instead of Ge could photosensitize Yb3+-doped silica fiber (YDF), while maintaining fiber numerical aperture (NA) at 0.12 under a high 2.5-wt.% Yb doping level. Based on the short monolithic DBR cavity constructed by this germanium-free photosensitive highly YDF, a 1064 nm fiber laser with a 48.6% slope efficiency and an over 200 mW power on two orthogonally polarized modes could be realized. Further stable and linear-polarized 1064 nm SFFL is also demonstrated in a designed monolithic polarization maintaining cavity with an output power of 119 mW and an efficiency of 26.4%. Our results provide an alternative way to develop photosensitive highly RE-doped fibers towards monolithic laser cavity application.

Funder

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3