Phase-shifting determination and pattern recognition using a modified Sagnac interferometer with multiple reflections

Author:

Usman AbdullahiORCID,Bhatranand ApichaiORCID,Jiraraksopakun YuttapongORCID,Sabo Muhammad KhalidORCID,Buranasiri Prathan1ORCID

Affiliation:

1. King Mongkut’s Institute of Technology Ladkrabang

Abstract

This work has implemented a diverse modification of the Sagnac interferometer to accommodate various measurement requirements, including phase shifting, pattern recognition, and a morphological analysis. These modifications were introduced to validate the adaptability and versatility of the system. To enable phase shifting using the multiple light reflection technique, a half-wave plate (HWP) was utilized with rotations at 0, π/8, π/4, and 3π/8 radians, generating four interference patterns. It is possible to observe a distinct circular fringe width as the polarized light experiences diffraction at the interferometer’s output as it travels through a circular aperture with various diameters ranging from 0.4 to 1 mm. Further modifications were made to the setup by inserting a pure glass and a fluoride-doped tin oxide (FTO) transparent substrate into the common path. This modification aimed to detect and analyze a horizontal fringe pattern. Subsequently, the FTO substrate was replaced with a bee leg to facilitate morphology recognition. A deep learning-based image processing technique was employed to analyze the bee leg morphology. The experimental results showed that the proposed scheme succeeded in achieving the phase shift, measuring hole diameters with errors smaller than 1.6%, separating distinct transparent crystals, and acquiring the morphological view of a bee’s leg. The method also has successfully achieved an accurate surface area and background segmentation with an accuracy over 87%. Overall, the outcomes demonstrated the potential of proposed interferometers for various applications, and the advantages of the optical sensors were highlighted, particularly in microscopic applications.

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3