Surface laser traps with conformable phase-gradient optical force field enable multifunctional manipulation of particles

Author:

Rodrigo José A.ORCID,Franco EnarORCID,Martínez-Matos Óscar

Abstract

Optical manipulation of objects at the nanometer-to-micrometer scale relies on the precise shaping of a focused laser beam to control the optical forces acting on them. Here, we introduce and experimentally demonstrate surface-shaped laser traps with conformable phase-gradient force field enabling multifunctional optical manipulation of nanoparticles in two dimensions. For instance, we show how this optical force field can be designed to capture and move multiple particles to set them into an autonomous sophisticated optical transport across any flat surface, regardless of the shape of its boundary. Unlike conventional laser traps, the extended optical field of the surface laser trap makes it easier for the particles to interact among themselves and with their environment. It allowed us to optically transport multiple plasmonic nanoparticles (gold nanospheres) while simultaneously enabling their electromagnetic interaction to form spinning optically bound (OB) dimers, which is the smallest case of optical matter system. We have experimentally demonstrated, for the first time, the creation of stable spinning OB dimers with control of their rotational and translational motion across the entire surface. These traveling OB dimers guided by the phase-gradient force work as switchable miniature motor rotors, whose rotation is caused by the combined effects of optical binding forces and optical torque induced by a circularly polarized surface laser trap. The degree of customization of the surface laser traps provides a versatility that can boost the study and control of complex systems of interacting particles, including plasmonic structures as the optical matter ones of high interest in optics and photonics.

Funder

Ministerio de Ciencia e Innovación

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3