Abstract
In this study, we compare the two prominent Light Detection and Ranging (LIDAR) technologies: Frequency Modulated Continuous Wave (FMCW) and Time of Flight (ToF). By constructing a setup capable of performing both LIDAR methods at the single photon level using a Superconducting Nanowire Single Photon Detector (SNSPD), we compare the accuracy and investigate the dependence of the resulting images and accuracy on the signal power and the corresponding signal to noise ratio. We demonstrate that both LIDAR methods are able to reconstruct 3D environments with a signal-to-noise ratio as low as 0.03. However, the accuracy of FMCW LIDAR is shown to degrade in the low photon regime, while ToF LIDAR accuracy is shown to be stable across the same range. Lastly, we use a median de-noising convolution filter to effectively combat the typical "salt and pepper" noise found in LIDAR images, further enhancing the performance of both methods.
Funder
HORIZON EUROPE European Research Council
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献