Time domain analysis of photon scattering and Huygens-Fresnel back projection

Author:

Laurenzis Martin1ORCID,Christnacher Frank1

Affiliation:

1. French-German Research Institute of Saint-Louis

Abstract

Stand-off detection and characterization of scattering media such as fog and aerosols is an important task in environmental monitoring and related applications. We present, for the first time, a stand-off characterization of sprayed water fog in the time domain. Using a time correlated single photon counting, we measure transient signatures of photons reflected off a target within the fog volume. We can distinguish ballistic from scattered photon. By application of a forward propagation model, we reconstruct the scattered photon paths and determine the fog’s mean scattering length μscat. in a range of 1.55 m to 1.86m. Moreover, in a second analysis, we project the recorded transients back to reconstruct the scene using virtual Huygens-Fresnel wavefronts. While in medium-density fog some contribution of ballistic remain in the signatures, we could demonstrate that in high-density fog, all recorded photons are at least scattered a single time. This work may path the way to novel characterization tools of and enhanced imaging in scattering media.

Funder

Institut Franco-Allemand de Recherches de Saint-Louis

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Reference39 articles.

1. Automotive Radar and Lidar Systems for Next Generation Driver Assistance Functions

2. Automotive sensing: Assessing the impact of fog on LWIR, MWIR, SWIR, visible, and lidar performance;Judd,2019

3. Lidar for Autonomous Driving: The Principles, Challenges, and Trends for Automotive Lidar and Perception Systems

4. Advances in Single-Photon Lidar for Autonomous Vehicles: Working Principles, Challenges, and Recent Advances

5. Display of an analytical model for backscattered luminance and a full-field range gated imaging system for vision in fog;Belin,2008

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3