Affiliation:
1. Institute of Plasma Physics of the Czech Academy of Sciences
2. Technical University in Liberec
Abstract
The RAndom Temporal Signals (RATS) method has proven to be a useful and versatile method for measuring photoluminescence (PL) dynamics and fluorescence lifetime imaging (FLIM). Here, we present two fundamental development steps in the method. First, we demonstrate that by using random digital laser modulation in RATS, it is possible to implement the measurement of PL dynamics with temporal resolution in units of nanoseconds. Secondly, we propose an alternative approach to evaluating FLIM measurements based on a single-pixel camera experiment. In contrast to the standard evaluation, which requires a lengthy iterative reconstruction of PL maps for each timepoint, here we use a limited set of predetermined PL lifetimes and calculate the amplitude maps corresponding to each lifetime. The alternative approach significantly saves post-processing time and, in addition, in a system with noise present, it shows better stability in terms of the accuracy of the FLIM spectrogram. Besides simulations that confirmed the functionality of the extension, we implemented the new advancements into a microscope optical setup for mapping PL dynamics on the micrometer scale. The presented principles were also verified experimentally by mapping a LuAG:Ce crystal surface.
Funder
Ministerstvo Školství, Mládeže a Tělovýchovy
Grantová Agentura České Republiky
Technická Univerzita v Liberci
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献