Preparation and SERS applications of Ta2O5 composite nanostructures

Author:

Mingjin Liu,Cheng Shuo,Du Xuejian,Li Jing,Peng Qianqian,Zhao Chenlong,Wang Yaoyang,Xiu XianwuORCID

Abstract

Noble metal and semiconductor composite substrates possess high sensitivity, excellent stability, good biocompatibility, and selective enhancement, making them an important research direction in the field of surface-enhanced Raman scattering (SERS). Ta2O5, as a semiconductor material with high thermal stability, corrosion resistance, outstanding optical properties, and catalytic performance, has great potential in SERS research. This study aims to design and fabricate a composite SERS substrate based on Ta2O5 nanostructures, achieving optimal detection performance by combining the urchin-like structure of Ta2O5 with silver nanoparticles (Ag NPs). The urchin-like Ta2O5 nanostructures were prepared using a hydrothermal reaction method. The bandgap was modulated through structure design and the self-doping technique, the charge transfer efficiency and surface plasmon resonance effects were improved, thereby achieving better SERS performance. The composite substrate enables highly sensitive quantitative detection. This composite SERS substrate combines the electromagnetic enhancement mechanism (EM) and chemical enhancement mechanism (CM), achieving ultra-low detection limits of 10−13 M for R6G. Within the concentration range above 10−12 M, there is a good linear relationship between concentration and peak intensity, demonstrating excellent quantitative analysis capabilities. Furthermore, this composite SERS substrate is capable of precise detection of analytes such as crystal violet (CV) and methylene blue (MB), holding broad application prospects in areas such as food safety and environmental monitoring.

Funder

Natural Science Foundation of Shandong Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3