Abstract
The p-polarization component of radiation pressure force from an unpolarized blackbody light source is predicted by the use of a Maxwell equation solver for a right triangular prism grating of period 2 μm and refractive index 3.5. The transmitted and reflected angular scattering distributions are found to qualitatively agree with diffraction theory: At relatively short wavelengths the transmitted light is concentrated near the refraction angle, and reflected light is concentrated near the reflection angle. Owing to diffraction and multiple internal reflections, however, the spectral irradiance of transmitted and reflected light was found to significantly vary with wavelength. We found that the high value of the refractive index produced a large fraction of reflected light, thereby reducing the net transverse component of radiation pressure force. These results suggest that low index transmission gratings, anti-reflection coatings, optimized metasurface films, or reflection gratings should be explored for future solar sailing missions.
Funder
Space Technology Mission Directorate
Subject
Atomic and Molecular Physics, and Optics
Reference31 articles.
1. Evaluation of Sail Mechanics of IKAROS on its Slow-Spin and Reverse-Spin Operation;Shirasawa,2014
2. Status of solar sail technology within NASA
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献