Origination of the chiroptical effect in plasmonic nano-structures in the view of quasi-normal mode theory

Author:

Zhou Jie,Huang Shanshan,Peng Jialong1ORCID,Hou Yidong

Affiliation:

1. National University of Defense Technology

Abstract

General chiroptical effects describe all of the interaction differences between light carrying opposite spins and chiral matters, such as circular dichroism, optical activity, and chiral Raman optical activity, and have been proven to hold great promise for extensive applications in physics, chemistry, and biology. However, the underlying physical mechanism is usually explained intangibly by the twisted currents in chiral geometry, where the cross coupling between the electric and magnetic dipoles breaks the degeneracy of the helicity eigenmodes. In this Letter, we construct a clear sight on the origination of the chiroptical effect in the view of the eigenstates of a non-Hermitian system, i.e., quasi-normal modes (QNMs). The intrinsic chiroptical effect comes from the chiral QNMs, which have distinct excitation and emission differences in both phase and intensity for lights carrying opposite spins, while the extrinsic chiroptical effect coming from the achiral QNMs requires specific illumination and observation conditions, where the low symmetrical QNM can generate chiroptical effects in both absorption and scattering, but the highly symmetrical QNMs can only generate chiroptical effects in scattering through the coherent superposition of several QNMs. Our findings offer an in-depth understanding of the chiroptical effect and have the potential to bring broad inspiration to the design and applications of chiroptical effects.

Funder

National Natural Science Foundation of China

International Visiting Program for Excellent Young Scholars of SCU

International Science and Technology Innovation Cooperation of Sichuan Province

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3