Influence of the interaction geometry on the fidelity of the two-qubit Rydberg blockade gate

Author:

Vybornyi I.1ORCID,Gerasimov L. V.234ORCID,Kupriyanov D. V.235ORCID,Straupe S. S.36ORCID,Tikhonov K. S.6ORCID

Affiliation:

1. Leibniz Universität Hannover

2. HSE University

3. M.V. Lomonosov Moscow State University

4. Peter the Great St. Petersburg Polytechnic University

5. Old Dominion University

6. Russian Quantum Center

Abstract

We present a comparative analysis of physical constraints limiting the quality of spin entanglement created using the Rydberg blockade technique in an ensemble of trapped neutral 87Rb atoms. Based on the approach developed earlier in Phys. Rev. A 106, 042410 (2022)PLRAAN1050-294710.1103/PhysRevA.106.042410, we consider the complete multilevel Zeeman structure of the interacting atoms and apply our simulations to two excitation geometries featured by different transition types, both feasible for experimental verification. We demonstrate that the blockade shift strongly depends not only on the interatomic separation but also on the angular position of the atom pair with respect to the quantization axis determined by polarization of the driving fields. As an example, we have estimated fidelity for a promising design of a CZ gate, recently proposed by Levine et al. [Phys. Rev. Lett. 123, 230501 (2019)PRLTAO0031-900710.1103/PhysRevLett.123.230501] for various possible experimental geometries. Anisotropic effects in entangling gates considered here are important for the optimal choice of proper geometry for quantum computing in two- and three-dimensional arrays of atomic qubits and are of considerable interest for quantum simulators, especially those that are designed for anisotropic physical models.

Funder

Russian Science Foundation

Roadmap for Quantum Computing

Foundation for the Advancement of Theoretical Physics and Mathematics

Interdisciplinary Scientific and Educational School of Moscow University Photonic and Quantum Technologies, Digital Medicine

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3