Monolithically integrated high-resolution full-color GaN-on-Si micro-LED microdisplay

Author:

Qi Longheng1ORCID,Zhang Xu1ORCID,Chong Wing Cheung1ORCID,Lau Kei May1ORCID

Affiliation:

1. Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology

Abstract

Full-color micro-LED displays are being widely developed and regarded as a primary option in current microdisplay technologies to fulfill the urgent demands of metaverse applications in the next decade. In this paper, a monolithic full-color micro-LED microdisplay with a resolution of 423 pixels per inch is demonstrated through the integration of a blue GaN-on-Si display module and a quantum dots photoresist (QDs-PR) color conversion module. The 400 × 240 active-matrix blue micro-LED display with a dominant wavelength of 440 nm was monolithically fabricated using GaN-on-Si epiwafers and flip-chip bonded on a custom-designed complementary metal-oxide semiconductor backplane. A color conversion module was independently fabricated on a 4-in. sapphire substrate by applying red and green QDs-PR arrays and a color filter array through the standard lithography process. Combining the blue GaN-on-Si micro-LED display module and the lithography-based QDs-PR color conversion module, a full-color micro-LED display was achieved with a wide color gamut up to 104% of the standard red, green, and blue and a maximum brightness of over 500 nits. The influence of blue light leakage resulting from the possible misalignment of flip-chip bonding and crosstalk in the bottom GaN-on-Si display was investigated in which the percentages of efficient pumping light for the blue, green, and red subpixels are around 95%, 89%, and 92%, respectively. This prototype demonstrates potential scalability and low-cost volume production of high-resolution full-color micro-LED microdisplays soon.

Funder

Innovation and Technology Fund

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3