Affiliation:
1. Harvard University
2. California Institute of Technology
Abstract
We measure the photothermal nonlinear response in suspended cubic silicon carbide (3C-SiC) and 3C-SiC-on-insulator (SiCOI) microring resonators. Bi-stability and thermo-optic hysteresis is observed in both types of resonators, with the suspended resonators showing a stronger response. A photothermal nonlinear index of 4.02×10−15 m2/W is determined for the suspended resonators, while the SiCOI resonators demonstrate one order of magnitude lower photothermal nonlinear index of 4.32×10−16 m2/W. Cavity absorption and temperature analysis suggest that the differences in thermal bi-stability are due to variations in waveguide absorption, likely from crystal defect density differences throughout the epitaxially grown layers. Furthermore, coupled mode theory model shows that the strength of the optical bi-stability, in suspended and SiCOI resonators can be engineered for high power or nonlinear applications.
Funder
University of Sydney
Natural Sciences and Engineering Research Council of Canada
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献