Enhancing 3D human pose estimation with NIR single-pixel imaging and time-of-flight technology: a deep learning approach

Author:

Osorio Quero Carlos,Durini Daniel,Rangel-Magdaleno Jose,Martinez-Carranza Jose1,Ramos-Garcia Ruben1

Affiliation:

1. Instituto Nacional de Astrofísica Óptica y Electrónica

Abstract

The extraction of 3D human pose and body shape details from a single monocular image is a significant challenge in computer vision. Traditional methods use RGB images, but these are constrained by varying lighting and occlusions. However, cutting-edge developments in imaging technologies have introduced new techniques such as single-pixel imaging (SPI) that can surmount these hurdles. In the near-infrared spectrum, SPI demonstrates impressive capabilities in capturing a 3D human pose. This wavelength can penetrate clothing and is less influenced by lighting variations than visible light, thus providing a reliable means to accurately capture body shape and pose data, even in difficult settings. In this work, we explore the use of an SPI camera operating in the NIR with time-of-flight (TOF) at bands 850–1550 nm as a solution to detect humans in nighttime environments. The proposed system uses the vision transformers (ViT) model to detect and extract the characteristic features of humans for integration over a 3D body model SMPL-X through 3D body shape regression using deep learning. To evaluate the efficacy of NIR-SPI 3D image reconstruction, we constructed a laboratory scenario that simulates nighttime conditions, enabling us to test the feasibility of employing NIR-SPI as a vision sensor in outdoor environments. By assessing the results obtained from this setup, we aim to demonstrate the potential of NIR-SPI as an effective tool to detect humans in nighttime scenarios and capture their accurate 3D body pose and shape.

Funder

National Council for Science and Technology—CONACyT

Publisher

Optica Publishing Group

Reference85 articles.

1. Evaluation of 3D reconstruction algorithms for a small animal pet camera;Johnson,1996

2. Model-based estimation of 3D human motion

3. Augmented reality in automation using virtual 3D models;Sudhaman,2012

4. A review on virtual reality for 3D virtual trial room;Ram,2022

5. 3D body image perception and pain visualization tool for upper limb amputees;Prahm,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3