Affiliation:
1. Institute of Microelectronics of the Chinese Academy of Sciences
2. University of Chinese Academy of Sciences
3. Peking University
4. Peking University Shenzhen Graduate School
Abstract
Optical coherence tomography (OCT), owing to its non-invasive nature, has demonstrated tremendous potential in clinical practice and has become a prevalent diagnostic method. Nevertheless, the inherent speckle noise and low sampling rate in OCT imaging often limit the quality of OCT images. In this paper, we propose a lightweight Transformer to efficiently reconstruct high-quality images from noisy and low-resolution OCT images acquired by short scans. Our method, PSCAT, parallelly employs spatial window self-attention and channel attention in the Transformer block to aggregate features from both spatial and channel dimensions. It explores the potential of the Transformer in denoising and super-resolution for OCT, reducing computational costs and enhancing the speed of image processing. To effectively assist in restoring high-frequency details, we introduce a hybrid loss function in both spatial and frequency domains. Extensive experiments demonstrate that our PSCAT has fewer network parameters and lower computational costs compared to state-of-the-art methods while delivering a competitive performance both qualitatively and quantitatively.
Funder
National Natural Science Foundation of China
Beijing Municipal Natural Science Foundation
Shenzhen Science and Technology Program
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献