Feedback and compensation scheme to suppress the thermal effects from a dipole trap beam for the optical fiber microcavity

Author:

Pan Yuhao1,Li Li1,Zhou Xiaolong1,Huang Dongyu1,Shen Zemin1,Wang Jian1,Li Chuanfeng1ORCID,Guo Guangcan1

Affiliation:

1. University of Science and Technology of China

Abstract

Cavity quantum electrodynamics (cavity QED) with neutral atoms is a promising platform for quantum information processing and optical fiber Fabry-Pérot microcavity with small mode volume is an important integrant for the large light-matter coupling strength. To transport cold atoms to the microcavity, a high-power optical dipole trap (ODT) beam perpendicular to the cavity axis is commonly used. However, the overlap between the ODT beam and the cavity mirrors causes thermal effects inducing a large cavity shift at the locking wavelength and a differential cavity shift at the probe wavelength which disturbs the cavity resonance. Here, we develop a feedback and compensation scheme to maintain the optical fiber microcavity resonant with the lasers at the locking and probe wavelengths simultaneously. The large cavity shift of 210 times the cavity linewidth, which makes the conventional PID scheme ineffective can be suppressed actively by a PIID feedback scheme with an additional I parameter. Differential cavity shift at the probe wavelength can be understood from the photothermal refraction and thermal expansion effects on the mirror coatings and be passively compensated by changing the frequency of the locking laser. A further normal-mode splitting measurement demonstrates the strong coupling between 85Rb atoms and cavity mode after the thermal effects are suppressed, which also confirms successful delivery and trapping of atoms into the optical cavity. This scheme can solve the thermal effects of the high-power ODT beam and will be helpful to cavity QED experimental research.

Funder

Innovation Program for Quantum Science and Technology

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3