Ultrafast modulable 2DEG Huygens metasurface

Author:

Zeng Hongxin1ORCID,Cong XuanORCID,Wang Shiqi,Gong Sen1ORCID,Huang Lin,Wang Lan1,Liang Huajie2ORCID,Lan Feng1,Cao Haoyi,Wang Zheng,Wang Weipeng,Liang Shixiong3,Feng Zhihong3,Yang Ziqiang1,Zhang Yaxin1,Cui Tie Jun14

Affiliation:

1. Zhangjiang Laboratory

2. Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China

3. Hebei Semiconductor Research Institute

4. Southeast University

Abstract

Huygens metasurfaces have demonstrated remarkable potential in perfect transmission and precise wavefront modulation through the synergistic integration of electric resonance and magnetic resonance. However, prevailing active or reconfigurable Huygens metasurfaces, based on all-optical systems, encounter formidable challenges associated with the intricate control of bulk dielectric using laser equipment and the presence of residual thermal effects, leading to limitations in continuous modulation speeds. Here, we present an ultrafast electrically driven terahertz Huygens metasurface that comprises an artificial microstructure layer featuring a two-dimensional electron gas (2DEG) provided by an AlGaN/GaN heterojunction, as well as a passive microstructure layer. Through precise manipulation of the carrier concentration within the 2DEG layer, we effectively govern the current distribution on the metasurfaces, inducing variations in electromagnetic resonance modes to modulate terahertz waves. This modulation mechanism achieves high efficiency and contrast for terahertz wave manipulation. Experimental investigations demonstrate continuous modulation capabilities of up to 6 GHz, a modulation efficiency of 90%, a transmission of 91%, and a remarkable relative operating bandwidth of 55.5%. These significant advancements substantially enhance the performance of terahertz metasurface modulators. Importantly, our work not only enables efficient amplitude modulation but also introduces an approach for the development of high-speed and efficient intelligent transmissive metasurfaces.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Sichuan Province Science and Technology Support Program

China Postdoctoral Science Foundation

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3