Solution to the issue of high-order diffraction images for cylindrical computer-generated holograms

Author:

Zhou Jie,Jiang Lei,Yu Guangwei,Wang Jiabao,Wu Yang,Wang JunORCID

Abstract

The cylindrical computer-generated hologram (CCGH), featuring a 360° viewing zone, has garnered widespread attention. However, the issue of high-order diffraction images due to pixelated structure in CCGH has not been previously reported and solved. For a cylindrical model offering a 360° viewing zone in the horizontal direction, the high-order diffraction images always overlap with the reconstruction image, leading to quality degradation. Furthermore, the 4f system is commonly used to eliminate high-order diffraction images in planar CGH, but its implementation is predictably complex for a cylindrical model. In this paper, we propose a solution to the issue of high-order diffraction images for CCGH. We derive the cylindrical diffraction formula from the outer hologram surface to the inner object surface in the spectral domain, and based on this, we subsequently analyze the effects brought by the pixel structure and propose the high-order diffraction model. Based on the proposed high-order diffraction model, we use the gradient descent method to optimize CCGH accounting for all diffraction orders simultaneously. Furthermore, we discuss the issue of circular convolution due to the periodicity of the Fast Fourier Transform (FFT) in cylindrical diffraction. The correctness of the proposed high-order diffraction model and the effectiveness of the proposed optimization method are demonstrated by numerical simulation. To our knowledge, this is the first time that the issue of high-order diffraction images in CCGH has been proposed, and we believe our solution can offer valuable guidance to practitioners in the field.

Funder

Open Fund of Jiangsu Engineering Research Center of Novel Optical Fiber Technology and Communication Network

National Natural Science Foundation of China

Chengdu Municipal Science and Technology Program

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3