Abstract
Functional tunability, environmental adaptability, and easy fabrication are highly desired properties in metasurfaces. Here we provide a tunable bilayer metasurface composed of two stacked identical dielectric magnetic mirrors. The magnetic mirrors are excited by the interaction between the interference of multipoles of each cylinder and the lattice resonance of the periodic array, which exhibits nonlocal electric field enhancement near the interface and high reflection. We achieve the reversible conversion between high reflection and high transmission by manipulating the interlayer coupling near the interface between the two magnetic mirrors. Controlling the interlayer spacing leads to the controllable interlayer coupling and scattering of meta-atom. The magnetic mirror effect boosts the interlayer coupling when the interlayer spacing is small. Furthermore, the high transmission of the bilayer metasurface has good robustness due to the meta-atom with interlayer coupling can maintain scattering suppression against positional perturbation. This work provides a straightforward method to design tunable metasurface and sheds new light on high-performance optical switches applied in communication and sensing.
Funder
National Natural Science Foundation of China
Science and Technology Planning Project of Guangdong Province
Basic and Applied Basic Research Foundation of Guangdong Province
Shenzhen Fundamental Research Program
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献