Enhancing the performance of coherent Ising machines in the large-noise regime with a fifth-order nonlinearity

Author:

Shi Ruqi,Böhm Fabian1,Van Vaerenbergh Thomas1ORCID,Bienstman Peter

Affiliation:

1. Hewlett Packard Labs

Abstract

Coherent Ising machines (CIMs), leveraging the bistable physical properties of coherent light to emulate Ising spins, exhibit great potential as hardware accelerators for tackling complex combinatorial optimization problems. Recent advances have demonstrated that the performance of CIMs can be enhanced either by incorporating large random noise or higher-order nonlinearities, yet their combined effects on CIM performance remain mainly unexplored. In this work, we develop a numerical CIM model that utilizes a tunable fifth-order polynomial nonlinear dynamic function under large noise levels, which has the potential to be implemented in all-optical platforms. We propose a normal form of a CIM model that allows for both supercritical and subcritical pitchfork bifurcation operational regimes, with fifth-order nonlinearity and tunable hyperparameters to control the Ising spin dynamics. In the benchmark studies, we simulate various sets of MaxCut problems using our fifth-order polynomial CIM model. The results show a significant performance improvement, achieving an average of 59.5% improvement in median time-to-solution (TTS) and an average of 6 times improvement in median success rate (SR) for dense Maxcut problems in the BiqMac library, compared to the commonly used third-order polynomial CIM model with low noise. The fifth-order polynomial CIM model in the large-noise regime also shows better performance trends as the problem size scales up. These findings reveal the enhancements on the computational performance of Ising machines in the large-nose regime from fifth-order nonlinearity, showing important implications for both simulation and hardware perspectives.

Funder

Belgian EOS

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3