Affiliation:
1. University of Electronic Science and Technology of China
Abstract
In this paper, we propose a high-temperature resistant bilayer structure for electromagnetic protection with low reflection, consisting of a metasurface and an absorbing layer. The bottom metasurface decreases the reflected energy by using a phase cancellation mechanism to make electromagnetic wave scattering in the 8–12 GHz range. While the upper absorbing layer assimilates the incident electromagnetic energy through electrical losses and simultaneously regulates the reflection amplitude and phase of the metasurface to enhance scattering and expand its operating bandwidth. Research shows that the bilayer structure achieves a low reflection of -10 dB in the range of 6.7–11.4 GHz due to the combined effect of the above two physical mechanisms. In addition, long-term high-temperature and thermal cycling tests verified the stability of the structure in the temperature range of 25–300°C. This strategy provides the feasibility of electromagnetic protection in high-temperature conditions.
Funder
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献