Tunable topological edge and corner states in an all-dielectric photonic crystal

Author:

Zhao Yulin,Liang FengORCID,Han Jianfei,Wang Xiangru1,Zhao Deshuang,Wang Bing-ZhongORCID

Affiliation:

1. University of Electronic Science and Technology of China

Abstract

Topological photonics has become a new and fascinating area in recent years, which enables electromagnetic waves to propagate with negligible backscattering and excellent robustness even when encountering sharp corners or defects. But the flexible tunability of edge and corner states is challenging once the topological photonic crystals (PhCs) have been fabricated. In this paper, we propose a new all-dielectric PhC with C3 symmetry constructed by hexagonal array of petal-like aperture embedded in silicon background. The proposed configuration has much wider energy gap than its triangular counterpart, and hence is suitable for wideband and high-capacity applications. When the apertures are filled with liquid crystals (LCs), the topologically-protected edge and corner states can be regulated through changing the refractive index of the LCs under different bias voltages. Moreover, the robustness of topological protection of edge and corner states is further demonstrated. This is the first demonstration of LC based tunable valley higher-order photonic topological insulator. The tunability of the proposed topological PhCs may be beneficial for development of tunable optical waveguides, reconfigurable topological microcavities, and other intelligent topological optical/terahertz devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Key-Area Research and Development Program of Guangdong Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3