Abstract
Herein, we propose and demonstrate an efficient light modulator by intercalating the nonlinear thin film into the optical resonator cavities, which introduce the ultra-sharp resonances and simultaneously lead to the spatially overlapped optical field between the nonlinear material and the resonators. Differential field intensity distributions in the geometrical perturbation-assisted optical resonator make the high quality-factor resonant modes and strong field confinement. Multiple channel light modulation is achieved in such layered system, which enables the capability for tunability-selective modulation. The maximal modulation tunability is up to 1.968 nm/V, and the figure of merit (FOM) reaches 65.6 V−1, showing orders of magnitude larger than that of the previous state-of-the-art modulators. The electrical switch voltage is down to 0.015 V, the maximal switching ratio is 833%, and the extinction ratio is also up to 9.70 dB. These features confirm the realization of high-performance modulation and hold potential for applications in switches, communication and information, augmented and virtual reality, etc.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangxi Province
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献