Rotary-coordinate and shuttling-element cutting strategy for ultra-precision diamond turning of optical microstructures

Author:

Lu XiaoORCID,Cheung Chi FaiORCID,Wang ChunjinORCID

Abstract

Toolpath generation techniques have become increasingly critical in ultra-precision diamond turning for optical microstructures due to the dramatically enhanced geometrical complexity of the machined region. However, the conventionally used spiral toolpath is required for interpolation from the structural models, leading to random instability of the feeding axis and additional profile error between the toolpath and designed structures, which means an enlarged effect on the machining quality in ultra-precision machining. In this paper, a rotary-coordinate and shuttling-element cutting strategy based on integrated geometrical modelling and spiral toolpath generation is presented for ultra-precision turning of optical microstructures. Using the innovative rotary-coordinate and shuttling-element cutting method, the point clouds for the micro-structured modelling can be scattered along the spiral shape which can be directly fitted as the final toolpath. A series of simulation and cutting experiments have been carried out to realize the effectiveness of this method, and it is found that the preparation time in diamond turning can be significantly reduced along with ameliorating the machining quality.

Funder

PhD Studentship, Research Committee of The Hong Kong Polytechnic University

Research and Innovation Office of The Hong Kong Polytechnic University

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3