Design method for engineering the initial structure of a spectrometer

Author:

Yang Zhaoqing1ORCID,Xue Meng1,Guo Hanming1

Affiliation:

1. University of Shanghai for Science and Technology

Abstract

A well-considered initial structure plays a key role in the design of an exceptional spectrometer. Previously, the design method for the optical initial structure (MOIS) that has only focused on the optical properties based on simple imaging formulas and coma-free conditions has been extensively researched. However, as the shape and size of any optical component are not considered for the MOIS, the optical parameters before and after optimization are very different, which results in a loss of reference value of the initial structure. In order to address the aforementioned issues, a more efficient design method for engineering initial structure (MEIS) of the spectrometer is proposed, where not only the above optical properties are considered but also the relative position and size of any optical component in order to avoid the interference between the optical components. For the MEIS, three important anti-interference conditions between components are deduced through ray tracing, and the relevant imaging formulas are derived by geometric optics, which leads to the rapid calculation of component parameters and the acquisition of an initial structure satisfying the corresponding design requirements by setting reasonable spacing margins. To verify the validity of the MEIS, a wide-band high-resolution spectrometer system with a large CCD Toucan 216 is designed within a wavelength range of 700–1000 nm and a resolution of 0.5 nm. Compared with the MOIS, the positions of each component in the MEIS are more rationalized, which significantly eliminates the complex optimization processes. For the MEIS, changes only in the position of the image plane occur with minimal variations in the axial and vertical wheelbase (less than 0.5 mm) as well as the deflection angle (only 0.5°), with favorable evaluation indices. The MEIS has an important reference value for the rapid and efficient design of excellent spectrometers.

Funder

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

Leading Academic Discipline Project of Shanghai Municipal Government

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3