Adjoint-based optimization of dielectric coatings for refractory metals to achieve broadband spectral reflection

Author:

Balazadeh Koucheh AminORCID,Kecebas Muhammed Ali,Sendur Kursat1ORCID

Affiliation:

1. Sabanci University

Abstract

Refractory metals, which include niobium, tantalum, molybdenum, and tungsten, are critical components in applications in extreme environments due to their attractive thermomechanical properties. However, their low reflectivity below 1500 nm has prompted researchers to focus on increasing their reflection at shorter wavelengths. In this study, we applied an adjoint-based optimization technique to improve the spectral reflectivity of refractory metals in the broadband spectrum (300–3000 nm). An optimized periodic multilayer consisting of SiO2/TiO2 is selected as a starting point for the process. Then, the adjoint-based method is implemented to enhance the reflection of the surfaces. This approach involves an iterative procedure that guarantees improvement in every iteration. In every iteration, both the direct and adjoint solutions of Maxwell’s equations are computed to predict the scattering characteristics of a particular microstructure on a surface and measure its effectiveness. The results of our study indicate that the final designs not only increase reflectivity to over 90% but also have thermomechanical benefits that make them suitable for use in harsh environments. We also explored the effect of initial geometry on the results. Overall, our study shows that the adjoint-based optimization technique is an effective method for creating high-performing broadband reflectors with refractory metal substrates coated with dielectric multilayers.

Funder

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

Publisher

Optica Publishing Group

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3