Highly birefringent hollow-core anti-resonant terahertz fiber with a thin strut microstructure

Author:

Du Zixuan1,Zhou Yan1ORCID,Luo Si1,Zhang Yusheng1,Shao Jie1,Guan Zuguang1,Yang Huinan2,Chen Daru1

Affiliation:

1. Zhejiang Normal University

2. University of Shanghai for Science and Technology

Abstract

A novel highly birefringent and low transmission loss hollow-core anti-resonant (HC-AR) fiber with a central strut is proposed for terahertz waveguiding. To the best of our knowledge, it is the first time that a design of a highly birefringent terahertz fiber based on the hybrid guidance mechanism of the anti-resonant mechanism and the total internal reflection mechanism is provided. Several HC-AR fibers with both ultra-low transmission loss and ultra-low birefringence have been achieved in the near-infrared optical communication band. We propose a HC-AR fiber design in terahertz band by introducing a microstructure in the fiber core which leads to tremendous improvement in birefringence. Calculated results indicate that the proposed HC-AR fiber achieves a birefringence higher than 10−2 in a wide wavelength range. In addition, low relative absorption loss of 0.8% (8.6%) and negligible confinement loss of 1.69×10−4 dB/cm (9.14×10−3 dB/cm) for x-polarization (y-polarization) mode at 1THz are obtained. Furthermore, the main parameters of the fiber structure are evaluated and discussed, proving that the HC-AR fiber possesses great design and fabrication tolerance. Further investigation of the proposed HC-AR fiber also suggests a good balance between birefringence and transmission loss which can be achieved by changing strut thickness to cater numerous applications ideally.

Funder

Natural Science Foundation of Zhejiang Province

Science and Technology Department of Zhejiang Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3