Study of the free carrier characteristics and surface morphology of AlGaAs/GaAs thin films deposited using MOCVD

Author:

Liu Wei,Ji Xiaochuan,Dai Jianglin,Zhang Jinlong,Jiao Hongfei,Cheng Xinbin,Wang Zhanshan

Abstract

Ultra-low loss optical thin films find broad applications in fields such as vertical-cavity surface-emitting lasers and optical atomic clocks. The main optical losses in AlGaAs/GaAs distributed Bragg reflectors (DBRs) prepared using metal-organic chemical vapor deposition (MOCVD) arise from absorption loss caused by free carriers within the layers and scattering loss caused by surface roughness. In this study, we fabricated AlGaAs and GaAs single-layer thin films with varying Al compositions on substrates of three crystal orientations and under different V/III ratios. The dependence of carrier concentration and surface morphology on different substrates and growth conditions was investigated. Thin films grown on substrates with three different crystal orientations exhibited three distinct growth modes (step-flow mode, SK mode, and FM mode). The impact of the V/III ratio on the growth mode was found to be complex. Higher V/III ratios resulted in poorer morphology for films grown on (100) substrates, while better morphology was observed on (211) B substrates. Furthermore, the surface morphology of films grown on (100) 15° off substrates showed less sensitivity to changes in the V/III ratio. With increasing Al composition, the carrier concentration of the films significantly increased. Elevating the V/III ratio proved effective in suppressing the incorporation of carbon, thereby reducing the carrier concentration of AlGaAs films. GaAs films exhibited a low carrier concentration at an appropriate V/III ratio. Additionally, the distinct abilities of different substrates to adsorb impurities exerted a significant impact on the carrier concentration of the films. This study demonstrates that, under optimal conditions, it is feasible to fabricate AlGaAs/GaAs Bragg mirrors with low carrier concentration and relatively small roughness on (100) 15° off substrates.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3