Improved resolution in fiber bundle inline holographic microscopy using multiple illumination sources

Author:

Hughes Michael R.ORCID,McCall Callum

Abstract

Recent work has shown that high-quality inline holographic microscopy images can be captured through fiber imaging bundles. Speckle patterns arising from modal interference within the bundle cores can be minimized by use of a partially-coherent optical source such as an LED delivered via a multimode fiber. This allows numerical refocusing of holograms from samples at working distances of up to approximately 1 mm from the fiber bundle before the finite coherence begins to degrade the lateral resolution. However, at short working distances the lateral resolution is limited not by coherence, but by sampling effects due to core-to-core spacing in the bundle. In this article we demonstrate that multiple shifted holograms can be combined to improve the resolution by a factor of two. The shifted holograms can be rapidly acquired by sequentially firing LEDs, which are each coupled to their own, mutually offset, illumination fiber. Following a one-time calibration, resolution-enhanced images are created in real-time at an equivalent net frame rate of up to 7.5 Hz. The resolution improvement is demonstrated quantitatively using a resolution target and qualitatively using mounted biological slides. At longer working distances, beyond 0.6 mm, the improvement is reduced as resolution becomes limited by the source spatial and temporal coherence.

Funder

Royal Society

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3