Phase noise suppression of optic flexural disk accelerometer by studying the thermal stability of optical fiber ring

Author:

Sun Jiangquan,Wen Kunhua,Yang Jun1,Ping Xinyang2,Xu Pengbai1,Yu Zhangjun1,Wang Yuncai1,Qin Yuwen1ORCID

Affiliation:

1. Guangdong University of Technology

2. Harbin Engineering University

Abstract

As the core sensing elements of ultra-long fiber interferometer, the distributed thermal strain difference of the fiber rings can cause extra noise of the flexural disk, resulting in a penalty of the deterioration accuracy. In this paper, the thermal strain distribution characteristics of the fiber ring are firstly analyzed by the finite element method (FEM), and the distribution result is consistent with that demonstrated by the Rayleigh optical frequency-domain reflectometry (R-OFDR) strain measurement. The interferometer phase noise caused by the distributed strain difference is further studied by constructing a fully symmetric polarization-maintaining fiber-ring Mach-Zehnder interferometer (MZI) with an arm length of over 100 meters. The results show that the distributed thermal strain difference of two fiber rings will cause additional phase fluctuation, which leads to higher low-frequency noise. Therefore, a dual-fiber-ring MZI with matched distributed thermal strains is proposed to suppress the phase noise caused by the thermal strain, and the best suppression is as high as 45.6 dB. This is very important for the research and design of low noise fiber seismometer.

Funder

2021 Characteristic Innovation Research Project for University Teachers

Guangdong Provincial Introduction of Innovative Research and Development Team

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3