Interaction between the mid-infrared continuous wave laser with a center wavelength of 3.8 µm and fused silica

Author:

Pan Yunxiang,Chen Liang1,Liu Shengtian1,Niu Zhifeng1,Nan Pengyu2,Ni Xiaowu,Shen Zhonghua,Lu Jian

Affiliation:

1. Purification Equipment Research Institute of CSIC

2. School of Physics, Northwest University

Abstract

The absorption coefficient of fused silica for a mid-infrared (IR) laser is higher than that for a near-IR laser, but smaller than that for a far-IR laser. Therefore, the energy coupling efficiency of the mid-IR laser is higher than that for the near-IR laser, while the penetration depth is higher than that for the far-IR laser. Thus, the mid-IR laser is highly efficient in mitigating damage growth. In this study, a deuterium fluoride (DF) laser with a center wavelength of 3.8 µm was used to interact with fused silica. The temperature variation, changes in the reflected and transmitted intensities of the probe light incident on the laser irradiation area, and the vaporization and melting sputtering process were analyzed. The results demonstrate that when the laser intensity was low (<1.2 kW/cm2), no significant melting was observed, and the reflection and transmission properties gradually recovered after the end of the laser irradiation process. With a further increase in the laser intensity, the sample gradually melted and vaporized. At a laser intensity above 5.1 kW/cm2, the temperature of the sample increased rapidly and vapors in huge quantity evaporated from the surface of the sample. Moreover, when the laser intensity was increased to 9.5 kW/cm2, the sample melted and an intense melting sputtering process was observed, and the sample was melted through.

Funder

National Natural Science Foundation of China

Scientific Research Foundation of Education Department of Shanxi Province

Natural Science Foundation of Science and Technology Department of Shanxi Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3