Excitation dynamics in molecule resolved by internuclear distance driven by the strong laser field

Author:

Zhao Xiaoyun,Liu Mingqing1ORCID

Affiliation:

1. Shaanxi Normal University

Abstract

Rydberg-state excitation of stretched model molecules subjected to near-infrared intense laser fields has been investigated based on a fully quantum model (QM) proposed recently and the numerical solutions of time-dependent Schrödinger equation (TDSE). Given the good agreement between QM and TDSE, it is found that, as the molecules are stretched, the electron tends to be trapped into low-lying Rydberg-states after its ionization from the core, which can be attributed to the shift of the ionization moments corresponding to maximum excitation populations. Moreover, the n-distribution is broadened for molecules with increasing internuclear distance, which results from the change of momentum distribution of emitted electrons. Analysis indicates that both of the above phenomena are closely related to the interference effect of electronic wave packets emitted from different nuclei. Our study provides a more comprehensive understanding of the molecular excitation in intense laser fields, as well as a means of possible applications to related experimental observations.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3