Abstract
Lensless systems based on ptychographic imaging can simultaneously achieve a large field of view and high resolution while having the advantages of small size, portability, and low cost compared to traditional lensed imaging. However, lensless imaging systems are susceptible to environmental noise and have a lower resolution of individual images than lens-based imaging systems, which means that they require a longer time to obtain a good result. Therefore, in this paper, to improve the convergence rate and robustness of noise in lensless ptychographic imaging, we propose an adaptive correction method, in which we add an adaptive error term and noise correction term in lensless ptychographic algorithms to reach convergence faster and create a better suppression effect on both Gaussian noise and Poisson noise. The Wirtinger flow and the Nesterov algorithms are used in our method to reduce computational complexity and improve the convergence rate. We applied the method to phase reconstruction for lensless imaging and demonstrated the effectiveness of the method by simulation and experiment. The method can be easily applied to other ptychographic iterative algorithms.
Funder
Natural Science Foundation of Zhejiang Province
National Natural Science Foundation of China
Hangzhou Dianzi University
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering