Double-function enhancement algorithm for low-illumination images based on retinex theory

Author:

Chen Liwei1,Liu Yanyan1,Li Guoning2,Hong Jintao3,Li Jin4ORCID,Peng Jiantao5

Affiliation:

1. Changchun University of Science and Technology

2. Chinese Academy of Sciences

3. University of Cambridge

4. Beihang University

5. China Aerospace Science and Technology Corporation

Abstract

In order to solve the problems of noise amplification and excessive enhancement caused by low contrast and uneven illumination in the process of low-illumination image enhancement, a high-quality image enhancement algorithm is proposed in this paper. First, the total-variation model is used to obtain the smoothed V- and S-channel images, and the adaptive gamma transform is used to enhance the details of the smoothed V-channel image. Then, on this basis, the improved multi-scale retinex algorithms based on the logarithmic function and on the hyperbolic tangent function, respectively, are used to obtain different V-channel enhanced images, and the two images are fused according to the local intensity amplitude of the images. Finally, the three-dimensional gamma function is used to correct the fused image, and then adjust the image saturation. A lightness-order-error (LOE) approach is used to measure the naturalness of the enhanced image. The experimental results show that compared with other classical algorithms, the LOE value of the proposed algorithm can be reduced by 79.95% at most. Compared with other state-of-the-art algorithms, the LOE value can be reduced by 53.43% at most. Compared with some algorithms based on deep learning, the LOE value can be reduced by 52.13% at most. The algorithm proposed in this paper can effectively reduce image noise, retain image details, avoid excessive image enhancement, and obtain a better visual effect while ensuring the enhancement effect.

Funder

Innovation Foundation of Changchun University of Science and Technology

Education Department of Jilin Province, China

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Image enhancement algorithm for crystallization state detection of penicillin salt solution;Third International Conference on Advanced Algorithms and Signal Image Processing (AASIP 2023);2023-10-10

2. Cyclic Generative Attention-Adversarial Network for Low-Light Image Enhancement;Sensors;2023-08-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3