Estimation of chromophoric dissolved organic matter and non-algal particulate absorption coefficients of seawater in the ultraviolet by extrapolation from the visible spectral region

Author:

Kehrli Matthew D.ORCID,Stramski DariuszORCID,Reynolds Rick A.ORCID,Joshi Ishan D.ORCID

Abstract

Extending the capabilities of optical remote sensing and inverse optical algorithms, which have been commonly focused on the visible (VIS) range of the electromagnetic spectrum, to derive the optical properties of seawater in the ultraviolet (UV) range is important to advancing the understanding of various optical, biological, and photochemical processes in the ocean. In particular, existing remote-sensing reflectance models that derive the total spectral absorption coefficient of seawater, a(λ), and absorption partitioning models that partition a(λ) into the component absorption coefficients of phytoplankton, aph(λ), non-algal (depigmented) particles, ad(λ), and chromophoric dissolved organic matter (CDOM), ag(λ), are restricted to the VIS range. We assembled a quality-controlled development dataset of hyperspectral measurements of ag(λ) (N = 1294) and ad(λ) (N = 409) spanning a wide range of values across various ocean basins, and evaluated several extrapolation methods to extend ag(λ), ad(λ), and adg(λ) ≡ ag(λ) + ad(λ) into the near-UV spectral region by examining different sections of the VIS as a basis for extrapolation, different extrapolation functions, and different spectral sampling intervals of input data in the VIS. Our analysis determined the optimal method to estimate ag(λ) and adg(λ) at near-UV wavelengths (350 to 400 nm) which relies on an exponential extrapolation of data from the 400–450 nm range. The initial ad(λ) is obtained as a difference between the extrapolated estimates of adg(λ) and ag(λ). Additional correction functions based on the analysis of differences between the extrapolated and measured values in the near-UV were defined to obtain improved final estimates of ag(λ) and ad(λ) and then the final estimates of adg(λ) as a sum of final ag(λ) and ad(λ). The extrapolation model provides very good agreement between the extrapolated and measured data in the near-UV when the input data in the blue spectral region are available at 1 or 5 nm spectral sampling intervals. There is negligible bias between the modeled and measured values of all three absorption coefficients and the median absolute percent difference (MdAPD) is small, e.g., < 5.2% for ag(λ) and < 10.5% for ad(λ) at all near-UV wavelengths when evaluated with the development dataset. Assessment of the model on an independent dataset of concurrent ag(λ) and ad(λ) measurements (N = 149) yielded similar findings with only slight reduction of performance and MdAPD remaining below 6.7% for ag(λ) and 11% for ad(λ). These results are promising for integration of the extrapolation method with absorption partitioning models operating in the VIS.

Funder

National Aeronautics and Space Administration

University of California, San Diego

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Reference75 articles.

1. Absorption spectrum (380–700 nm) of pure water II Integrating cavity measurements

2. Chapter 1: The Absorption Coefficient, An Overview;TwardowskiNeeley,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3