Near-perfect (>99%) dual-band absorption in the visible using ultrathin semiconducting gratings

Author:

Gong Tao1,Munday Jeremy N.

Affiliation:

1. University of California

Abstract

Electromagnetic perfect absorption entails impedance-matching between two adjacent media, which is often achieved through the excitation of photonic/plasmonic resonances in structures such as metamaterials. Recently, super absorption was achieved using a simple bi-layer configuration consisting of ultrathin lossy films. These structures have drawn rising interest due to the structural simplicity and mechanical stability; however, the relatively broadband absorption and weak angular dependence can limit its versatility in many technologies. In this work, we describe an alternative structure based on an ultrathin semiconducting (Ge) grating that features a dual-band near-perfect resonant absorption (99.4%) in the visible regime. An angular-insensitive resonance is attributed to strong interference inside the ultrathin grating layer, akin to the resonance obtained with a single ultrathin planar film, while an angular-sensitive resonance shows a much narrower linewidth and results from the diffraction-induced surface mode coupling. With an appropriately designed grating period and thickness, strong coherent coupling between the two modes can give rise to an avoided-crossing in the absorption spectra. Further, the angular-insensitive resonance can be tuned separately from the angularly sensitive one, yielding a single narrow-banded absorption in the visible regime and a broadband absorption resonance that is pushed into the near-infrared (NIR). Our design creates new opportunities for ultra-thin and ultra-compact photonic devices for application in technologies including image sensing, structural color-filtering and coherent thermal light-emission.

Funder

Defense Advanced Research Projects Agency

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3