Multi-aperture imaging with Fermat spiral sub-aperture arrangement

Author:

Li WeiORCID,Liao Jiali1,Sun YanlingORCID,Gao Yang2ORCID,Tan Yizhou3,Lan Jinrong,Wang ZihaoORCID

Affiliation:

1. Science and Technology on Electromechanical Dynamic Control Laboratory

2. Xi’an Research Institute of High Technology

3. Chinese PLA General Hospital

Abstract

Multi-aperture optical telescopes have been extensively studied owing to their high resolution, low cost, and light weight. The next generation of optical telescopes is predicted to be equipped with dozens or even hundreds of segmented lenses; therefore, it is necessary to optimize the arrangement of the lens array. This paper proposes a new structure called the Fermat spiral array (FSA) to replace the conventional hexagonal or ring array for the sub-aperture arrangement of a multi-aperture imaging system. The point spread function (PSF) and modulation transfer function (MTF) of the imaging system are compared in detail at single and multiple incident wavelengths. The FSA can effectively weaken the sidelobe intensity of the PSF, which is 12.8 dB lower on average than conventional ones with a single incident wavelength in the simulation and 4.45 dB lower in the experiment. A new MTF evaluation function is proposed to describe the mean level of MTF at mid-frequencies. The FSA can improve the MTF of the imaging system and weaken the ringing effect in the images. The imaging simulation indicates that FSA has superior imaging quality compared to conventional arrays, with a higher peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The imaging experiments also achieve a higher SSIM with the FSA, which agrees well with the simulation results. The proposed FSA multi-aperture will help improve the imaging performance of next-generation optical telescopes.

Funder

National Natural Science Foundation of China

Science and Technology on Electromechanical Dynamic Control Laboratory

State Key Laboratory of Pulsed Power Laser Technology

Natural Science Foundation of Shaanxi Province

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3