High refresh rate display for natural monocular viewing in AOSLO psychophysics experiments

Author:

Moon Benjamin1ORCID,Linebach Glory1,Yang Angelina1,Jenks Samantha K.1,Rucci Michele1,Poletti Martina1,Rolland Jannick P.1ORCID

Affiliation:

1. University of Rochester

Abstract

By combining an external display operating at 360 frames per second with an adaptive optics scanning laser ophthalmoscope (AOSLO) for human foveal imaging, we demonstrate color stimulus delivery at high spatial and temporal resolution in AOSLO psychophysics experiments. A custom pupil relay enables viewing of the stimulus through a 3-mm effective pupil diameter and provides refractive error correction from -8 to +4 diopters. Performance of the assembled and aligned pupil relay was validated by measuring the wavefront error across the field of view and correction range, and the as-built Strehl ratio was 0.64 or better. High-acuity stimuli were rendered on the external display and imaged through the pupil relay to demonstrate that spatial frequencies up to 54 cycles per degree, corresponding to 20/11 visual acuity, are resolved. The completed external display was then used to render fixation markers across the field of view of the monitor, and a continuous retinal montage spanning 9.4 by 5.4 degrees of visual angle was acquired with the AOSLO. We conducted eye-tracking experiments during free-viewing and high-acuity tasks with polychromatic images presented on the external display. Sub-arcminute eye position uncertainty was achieved over a 1.5 by 1.5-degree trackable range, enabling precise localization of the line of sight on the stimulus while simultaneously imaging the fine structure of the human central fovea. This high refresh rate display overcomes the temporal, spectral, and field of view limitations of AOSLO-based stimulus presentation, enabling natural monocular viewing of stimuli in psychophysics experiments conducted with AOSLO.

Funder

National Institutes of Health

National Science Foundation

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3