Passively mode-locked erbium-doped fiber laser based on a nanodiamond saturable absorber

Author:

Shakaty Aseel A.1,Hmood Jassim K.1ORCID,Mahdi Bushra R.2,Harun Sulaiman W.3

Affiliation:

1. University of Technology

2. Ministry of Science and Technology

3. University of Malaya

Abstract

In this paper, we propose nanodiamond (ND) material as a saturable absorber (SA) to generate short pulses from a mode-locked erbium-doped fiber laser (EDFL). The ND-SA is fabricated by the drop-casting method using polyvinyledenedifluoride–trifluoroethylene as a host polymer and methyl ethel ketone as a solvent liquid. The SA, which possesses 20% ND concentration, has a 5.46% modulation depth with 2000 M W / c m 2 saturation intensity. Sequentially, the performance of the EDFL is investigated after integrating an ND-SA within the laser ring. The results reveal that the presented ND-SAs produce stable ultrashort laser pulses. Moreover, the fabricated ND film is a promising solid film for many photonic schemes. The proposed mode-locked EDFL-based ND-SA starts a mode-locking operation at a pumped power of 116 mW. The generated mode-locked pulses have a pulse duration of 0.84 ps, a repetition rate of 1.93 MHz, and a power of 0.517 mW, at a pumped power of 187 mW. Finally, to the best of our knowledge, this is the first time that the ND-SA has been used as a mode locker within the EDFL as a thin film and with the suggested fabrication method.

Funder

University of Technology, Iraq

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3