Pixel-reassigned line-scanning microscopy for fast volumetric super-resolution imaging

Author:

Li Hongjin12ORCID,Liu Gan12,Zhong Qiuyuan13,Chen Shih-Chi13ORCID

Affiliation:

1. Hong Kong Center for Cerebro-cardiovascular Health Engineering

2. City University of Hong Kong

3. The Chinese University of Hong Kong

Abstract

Super-resolution microscopy has revolutionized the field of biophotonics by revealing detailed 3D biological structures. Nonetheless, the technique is still largely limited by the low throughput and hampered by increased background signals for dense or thick biological specimens. In this paper, we present a pixel-reassigned continuous line-scanning microscope for large-scale high-speed 3D super-resolution imaging, which achieves an imaging resolution of 0.41 µm in the lateral direction, i.e., a 2× resolution enhancement from the raw images. Specifically, the recorded line images are first reassigned to the line-excitation center at each scanning position to enhance the resolution. Next, a modified HiLo algorithm is applied to reduce the background signals. Parametric models have been developed to simulate the imaging results of randomly distributed fluorescent beads. Imaging experiments were designed and performed to verify the predicted performance on various biological samples, which demonstrated an imaging speed of 3400 pixels/ms on millimeter-scale specimens. These results confirm the pixel-reassigned line-scanning microscopy is a facile and powerful method to realize large-area super-resolution imaging on thick or dense biological samples.

Funder

Research Grants Council, Collaborative Research Fund

Innovation and Technology Commission, Innovation Technology Fund

Hong Kong Center for Cerebro-Cardiovascular Health Engineering

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3